If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7+x^2-18x=0
a = 1; b = -18; c = +7;
Δ = b2-4ac
Δ = -182-4·1·7
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{74}}{2*1}=\frac{18-2\sqrt{74}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{74}}{2*1}=\frac{18+2\sqrt{74}}{2} $
| 12-4a=-20 | | 6b+8(5+b)=8 | | 13+7x=276)17=6 | | x-4+4x-8=2x+5 | | 5x+5-6=1-21x | | 5v+3=48 | | 7x+9=46x2 | | 3x+4(-7x+3)=-213 | | 14+x^2+9=0 | | -6=10+b | | G-0=g+11 | | b-92=-21 | | -10(-4-7x)=4(10x-5) | | 37+x=2.38 | | -6x+6(3x-14)=-228 | | -1=1-2m | | -2-4c=14 | | -9(p-92)=-54 | | 518448800/x=0.98 | | 53+d+70=180 | | 5•y=40 | | 64=4(c−77) | | 5/x=0.98 | | 3x+40+7x-8=180 | | 3d-20=16 | | 4x+8+x=5x+8 | | x=20=35 | | 8(5x-5)=8(-5x-5) | | 10(x+1)=10-10x | | v+33/9=7 | | 9x-9=7x+11 | | -7x-5x=30 |